Liposome-nucleic acid immunotherapeutics.

نویسنده

  • Steven Dow
چکیده

Cationic liposome-nucleic acid complexes, which were originally developed for use as non-viral gene delivery vectors, may now have an equally important application as immunotherapeutic drugs. Recent studies have highlighted the ability of cationic liposomes to potently activate the innate immune system when used to deliver certain Toll-like receptor (TLR) agonists. The immune-enhancing properties of cationic liposomes have been most clearly demonstrated when combined with nucleic acid agonists for endosomally located TLRs, including TLR3, TLR7/8 and TLR9. Immune potentiation by cationic liposomes likely results from the combined effects of endosomal targeting, protection of nucleic acids from extracellular degradation, and from signaling via newly identified cytoplasmic receptors for nucleic acids. The potent innate immune stimulatory properties of liposome-nucleic acid complexes make them particularly attractive as non-specific immunotherapeutics and as vaccine adjuvants. Liposome-nucleic acid complexes have demonstrated impressive anticancer activity in a number of different animal tumor models. Moreover, liposome-nucleic acid complexes have also been shown to be effective for immunotherapy of acute viral and bacterial infections, as well as chronic fungal infections. When used as vaccine adjuvants, liposome-nucleic acid complexes target antigens for efficient uptake by dendritic cells and are particularly effective in eliciting CD8(+) T-cell responses to protein antigens. Thus, liposome-nucleic acid complexes form a potent and versatile immunotherapeutic platform.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cationic liposome-nucleic acid complexes for gene delivery and gene silencing.

Cationic liposomes (CLs) are studied worldwide as carriers of DNA and short interfering RNA (siRNA) for gene delivery and gene silencing, and related clinical trials are ongoing. Optimization of transfection efficiency and silencing efficiency by cationic liposome carriers requires a comprehensive understanding of the structures of CL-nucleic acid complexes and the nature of their interactions ...

متن کامل

Label-free detection with polydiacetylene vesicle immobilized on the substrate

Polyacetylene vesicle has attracted attentions due to its unique chromatic properties, such as blue-to-red transition. The liposome-like vesicle was immobilized on solid substrates to detect small quantity analytes. In this case, fluorescence was used for detection. We successfully detected protein and bacteria using antibodies or aptamers on the vesicles as probes. Recently, we developed a dif...

متن کامل

Application of nucleic acid-lipid conjugates for the programmable organisation of liposomal modules.

We present a critical review of recent work related to the assembly of multicompartment liposome clusters using nucleic acids as a specific recognition unit to link liposomal modules. The asymmetry in nucleic acid binding to its non-self complementary strand allows the controlled association of different compartmental modules into composite systems. These biomimetic multicompartment architectur...

متن کامل

Cellular Morphology and Immunologic Properties of Escherichia coli Treated With Antimicrobial Antisense Peptide Nucleic Acid

  Background & Objectives: Antisense peptide nucleic acids (PNA) that target growth essential genes show potent bactericidal properties without cell lysis. We considered the possibility that whether PNA treatment influence the bacteria total nucleic acids content and apply approach to develop a new delivery system to Dendritic cells (DCs). DCs are the most potent antigen presenting cells in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert opinion on drug delivery

دوره 5 1  شماره 

صفحات  -

تاریخ انتشار 2008